The fractal property of the Lorenz attractor
نویسنده
چکیده
In a 1963 paper, Lorenz inferred that the Lorenz attractor must be an infinite complex of surfaces. We investigate this fractal property of the Lorenz attractor in two ways. Firstly, we obtain explicit plots of the fractal structure of the Lorenz attractor using symbolic dynamics and multiple precision computations of periodic orbits. The method we derive for multiple precision computation is based on iterative refinement and can compute even highly unstable periodic orbits with long symbol sequences with as many as 100 digits of accuracy. Ordinary numerical integrations are much too crude to show even the coarsest splitting of surfaces, and there appear to be no other explicit computations of the fractal structure in the extensive literature about the Lorenz attractor. Secondly, we apply a well known formula that gives the Hausdorff dimension of the Lorenz attractor in terms of the characteristic multipliers of its unstable periodic orbits. The formula converges impressively and the Hausdorff dimension of the Lorenz attractor appears to be 2.0627160. We use comparison with explicit computations of the fractal structure and discuss the accuracy of this formula and its applicability to the Lorenz equations. Additionally, we apply periodic orbit theory to the Lorenz attractor and exhibit its spectral determinant and compute its Lyapunov exponent. © 2003 Elsevier B.V. All rights reserved.
منابع مشابه
A three-scroll chaotic attractor
This Letter introduces a new chaotic member to the three-dimensional smooth autonomous quadratic system family, which derived from the classical Lorenz system but exhibits a three-scroll chaotic attractor. Interestingly, the two other scrolls are symmetry related with respect to the z-axis as for the Lorenz attractor, but the third scroll of this three-scroll chaotic attractor is around the z-a...
متن کاملAttractor Based Analysis of Centrally Cracked Plate Subjected to Chaotic Excitation
The presence of part-through cracks with limited length is one of the prevalent defects in the plate structures. Due to the slight effect of this type of damages on the frequency response of the plates, conventional vibration-based damage assessment could be a challenging task. In this study for the first time, a recently developed state-space method which is based on the chaotic excitation is ...
متن کاملNoise Induced Escape from Different Types of Chaotic Attractor
Noise-induced escape from a quasi-attractor, and from the Lorenz attractor with non-fractal boundaries, are compared through measurements of optimal paths. It has been found that, for both types of attractor, there exists a most probable (optimal) escape trajectory, the prehistory of the escape being defined by the structure of the chaotic attractor. For a quasi-attractor the escape process is ...
متن کاملAdaptive Synchronization for an Uncertain New Hyperchaotic Lorenz System
Synchronization of an uncertain new hyperchaotic Lorenz system is studied in this paper. Based on Lyapunov stability theory and adaptive synchronization method, an adaptive control law and a parameter update rule for unknown parameters are given for selfsynchronization of the hyperchaotic Lorenz systems. In addition, the synchronization of the hyperchaotic Lorenz system at speed with the unifie...
متن کامل2 6 Ja n 20 09 Chapter 1 Lorenz - like chaotic attractors revised
We describe some recent results on the dynamics of singular-hyperbolic (Lorenz-like) attractors Λ introduced in [25]: (1) there exists an invariant foliation whose leaves are forward contracted by the flow; (2) there exists a positive Lyapunov exponent at every orbit; (3) attractors in this class are expansive and so sensitive with respect to initial data; (4) they have zero volume if the flow ...
متن کامل